Бегущая строка на дисплее 1602. Бегущая строка

Бегущая строка в LCD на HD44780.

Поиск "готового решения" бегущей строки на Си результата не дал. Поэтому пришлось делать самому.

Этот "кусок" кода позволяет выводить бегущую строку (справа-налево), в любом месте и с использованием любого количества знакомест, в LCD индикаторах с контроллером HD44780 или аналогичном.

Первое, на чем нужно остановиться, это то, что язык Си не позволяет работать со строками "напрямую". То есть невозможно скопировать символ из одной строки в другую при помощи оператора присваивания (= )... для этого нужно использовать специальную функцию strncpy() . Вообще говоря, для работы со строками в Си используются несколько функций. В самоМучителях использованию этих функций посвящена отдельная глава. В Help"e на CV_AVR описание функций для работы со троками находится в разделе " String Functions" . Прототипы этих функций находятся в файле string.h .

"...исходная строка..." - строка символы из которой нужно выводить в "бегущей" строке;

"...отображаемые символы..." - собственно "бегущая строка".

Для организации бегущей строки выбран такой алгоритм:

1. Отображаемые символы сдвигаются справо налево. Крайний левый при этом "теряется".

2. После сдвига, в крайний правый символ копируется очередной символ из исходной строки.

3. При достижении конца исходной строки, очередным становится первый символ исходной строки.

Для сдвига символов - для сдвигаемой ячейки считывается код символа из экранного ОЗУ (DDRAM) HD44780 и записывается в левостоящую ячейку ОЗУ.

Согласно DataSheet на HD44780 левый символ верхней строки имеет адрес в DDRAM - 0x00, а левый символ нижней строки - 0x40. При этом нужно помнить, что для того чтобы обратиться именно к экранному ОЗУ (а не к ОЗУ знакогенератора) необходимо чтобы бит RS был равен 1 (RS является старшим битом в байте адреса см.DataSheet).

В итоге получаем, что для того чтобы "обратиться" ко второму слева символу верхней строки необходимо "работать" с адресом 0x01 | 0x80 = 0x81 .

Функции записи и чтения "внутреннего содержимого" HD44780 есть в библиотеке (прототипы в lcd.h ).... поэтому..собственно программа:

/* для CV_AVR

В данном примере бегущая строка выводиться в разряды с 8 (0xC7) по 16 нижней строки 16-ти разрядного индикатора.

. ......

#include

unsigned char n_sim=1,m_end=43; //43 - дина строки в примере
...........

beg_stroka(){
unsigned char i;

// сдвиг бегущей строки

if(beg_str){
for(i=0;i<9;i++)lcd_write_byte(0xC7+i,lcd_read_byte(0xC8+i));
beg_str=0;

// запись очередного символа в крайний правую позицию

lcd_gotoxy(15,1);
lcd_putchar(ish_str);
if(++n_sim>m_end)n_sim=1;
}
}

Глоссарий:

n_sim - указатель положения текущего символа в исходной строке;

m_end - общее количество символов в исходной строке;

beg_str - бит "разрещающий" сдвиг. C его помощью можно регулировать скорость "бега";

ish_str - исходная строка.

Скорее всего, в каждом из существующих компиляторов Си имеются библиотечные функции для работы с HD44780. Поэтому "переделать" программу под "свой" компилятор не составит труда.

Исходную строку я "готовлю" при помощи известной утилиты "HD44780.exe". При ее использовании, в коментариях, указывается длина строки: "/* Maximum length of a line: 43 byte */"

Привет Ребятушки. Сегодня запилим бегущую строку на светодиодных модулях MAX7219 и Arduino. Задача очень простая и не потребует от нас больших знаний в области электроники и программирования. Для начала предлагаю изучить немного теории по устройству светодиодной матрицы, принципу ее подключения и посмотреть видео результата к которому мы будем стремиться на протяжении всей статьи.

Светодиодная матрица - это графический индикатор, который можно использовать для вывода простых изображений, букв и цифр. Я не ставлю задачу подробно разобраться с устройством матричных индикаторов, однако стоит заметить, что по сути матрица состоит и 8х8 светодиодов. По сути все сводиться к динамической индикации. Основываясь на этом, понятно, что группировать несколько матриц вместе задача не из простых. На каждый новый ряд или колонку матриц, нужно добавлять новый сдвиговый регистр вместе с проводами и резисторами, а по-хорошему еще и микросхему ULN2003.

К счастью, инженеры давно уже разработали специализированные микросхемы для управления разного рода индикаторами. В этой статье мы рассмотрим матричный модуль с микросхемой MAX7219. Как станет понятно позже, работать с таким модулем одно удовольствие.

Модуль светодиодной матрицы с микросхемой MAX7219

Модуль представляет из себя плату с микросхемой, необходимой для неё обвязкой и, собственно, матричным индикатором. Обычно индикатор не впаивают в плату, а вставляют в разъем. Это сделано для того, чтобы группу модулей можно было сначала закрепить на какой то поверхности винтами, а затем вставить в них матрицы.

У модуля есть пять выводов на каждой стороне. С одной стороны данные входят в модуль, с другой стороны данные выходят из модуля и передаются в следующий. Это позволяет соединять матрицы у цепочку.

Входной разъем / Выходной разъем:

  • VCC, GND - питание;
  • DIN - вход данных;
  • CS - выбор модуля (chip select);
  • CLK - синхроимпульс.

Работает модуль от напряжения 5 Вольт.

Вывод пикселей с помощью библиотеки Max72xxPanel

Для управления микросхемой MAX7219 воспользуемся библиотекой Max72xxPanel . Скачать её можно по ссылкам в конце статьи.

Установим библиотеку и напишем небольшой код, который будет выводить на дисплей всего одну точку с координатами x=3 и y=4. Точка будет мигать с периодом 600 миллисекунд.

#include #include #include int pinCS = 10; int numberOfHorizontalDisplays = 1; // количество матриц по-горизонтали int numberOfVerticalDisplays = 1; // количество матриц по-вертикали Max72xxPanel matrix = Max72xxPanel(pinCS, numberOfHorizontalDisplays, numberOfVerticalDisplays); void setup() { matrix.setIntensity(4); // яркость от 0 до 15 } void loop() { matrix.drawPixel(3, 4, HIGH); // зажигаем пиксель с координатами {3,4} matrix.write(); // вывод всех пикселей на матрицу delay(300); matrix.drawPixel(3, 4, LOW); // гасим пиксель matrix.write(); delay(300); }

Как уже говорилось ранее, матричные модули с микросхемой MAX7219 можно легко объединять. Именно для этой цели в начале программы мы задаем количество матриц по-горизонтали и по-вертикали. В данном случае используется одна матрица, так что оба этих параметра будут равны 1.

Важно отметить, что после включения и выключения пикселей с помощью функции drawPixel , необходимо вызвать функцию write . Без функции write, пиксели не высветятся на матрице!

Теперь напишем код, который отобразит на матрице смайл. Смайл зашифруем с помощью массива из восьми байт. Каждый байт массива будет отвечать за строку матрицы, а каждый бит в байте за точку в строке.

#include #include #include int pinCS = 10; int numberOfHorizontalDisplays = 1; // количество матриц по-горизонтали int numberOfVerticalDisplays = 1; // количество матриц по-вертикали Max72xxPanel matrix = Max72xxPanel(pinCS, numberOfHorizontalDisplays, numberOfVerticalDisplays); const byte data = { 0b00111100, 0b01000010, 0b10100101, 0b10000001, 0b10100101, 0b10011001, 0b01000010, 0b00111100 }; void setup() { matrix.setIntensity(7); // яркость от 0 до 15 matrix.fillScreen(LOW); // очистка матрицы for (int y = 0; y < 8; y++) { for (int x = 0; x < 8; x++) { // зажигаем x-й пиксель в y-й строке matrix.drawPixel(x, y, data[y] & (1<

Примечание. В библиотеке Max72xxPanel есть функция setRotation , которая задает ориентацию изображения на матрице. Например, если мы захотим повернуть смайл на 90 градусов, нужно будет сразу после вызова функции setIntensity вызвать setRotation с соответствующими аргументами:

matrix.setRotation(0, 1);

первый параметр - это индекс матрицы, в нашем случае он равен нулю; второй параметр - количество поворотов на 90 градусов.

Вывод текста с помощью библиотеки Adafruit-GFX-Library

Подобным же образом можно выводить на матрицу и любой другой символ, например, букву. Но чтобы иметь возможность отображать любую букву английского алфавита, нам необходимо будет определить в программе целых 26 восьмибайтных массива! Это очень муторно, и разумеется кто-то это уже сделал до нас.

В популярной библиотеке Adafruit-GFX-Library помимо функций для работы с графикой и текстом, имеется и база латинских букв в верхнем и нижнем регистрах, а также все знаки препинания и прочие служебные символы. Ссылка на библиотеку есть в конце статьи.

Отобразить символ на матрице можно с помощью функции drawChar .

drawChar(x, y, символ, цвет, фон, размер);

Первые два параметра функции отвечают за координаты верхнего левого угла символа. Третий параметр - это сам символ. Цвет символа в нашем случае будет равен 1 или HIGH, так как матрица двухцветная. Фон равен 0 или LOW. Последний параметр «размер» сделаем равным 1.

Напишем программу, которая будет по-очереди выводить на матрицу все буквы фразы: «HELLO WORLD!».

#include #include #include int pinCS = 10; int numberOfHorizontalDisplays = 1; int numberOfVerticalDisplays = 1; Max72xxPanel matrix = Max72xxPanel(pinCS, numberOfHorizontalDisplays, numberOfVerticalDisplays); String tape = «HELLO WORLD»; int wait = 800; void setup() { matrix.setIntensity(1); // яркость от 0 до 15 } void loop() { for (int i = 0 ; i < tape.length(); i++) { matrix.fillScreen(LOW); matrix.drawChar(0, 0, tape[i], HIGH, LOW, 1); matrix.write(); delay(wait); } }

Примечание. В библиотеке Adafruit_GFX имеется множество функций для работы с графикой. Например, drawCircle(3, 3, 2, HIGH) начертит окружность с центром {3,3} и радиусом 2. Последний параметр - цвет, но в случае монохромной матрицы он равен 1 или HIGH. Функция drawLine(0, 0, 3, 6, HIGH) начертит отрезок между точками {0,0} и {3,6}.

Бегущая строка на max7219

И так надеюсь мы разобрались с устройством и принципом вывода на одиночную матрицу. Теперь перейдем непосредственно к бегущей строке.

Что потребуется?

Для реализации идеи потребуется совсем немного деталей:

  • два светодиодных модуля, состоящих из четырёх матриц 8 на 8 пикселей;
  • соединительные провода;
  • плата Arduino Nano;

Схема

На печатной плате используемого светодиодного модуля расположено 4 матрицы размером 8 на 8 пикселей. Каждое светодиодное табло управляется микросхемой MAX7219.

MAX7219 представляет собой контроллер управления led-дисплеями, матрицами с общим катодом и дискретными светодиодами в количестве до 64 шт. Для более комфортного восприятия информации, выводимой на светодиодное табло, рекомендуется устанавливать несколько модулей. Для этого их объединяют в последовательно включенные группы, то есть выход первого модуля (out) подключают к входу второго модуля (in). Моя сборка состоит из двух модулей (16 матриц), длины которых вполне хватит для удобного прочтения целых предложений. При этом подключение сборки к Arduino производиться точно также как и к одиночному модулю.

Программирование бегущей строки.

Бегущая строка из Arduino и светодиодных модулей под управлением MAX7219 практически готова. Настало время перейти к заключающей, программной части.

#include #include #include int pinCS = 10; // Подключаем CS к 10-му пину, DIN к MOSI и CLK к SCK int numberOfHorizontalDisplays = 1; // Количество модулей по горизонтали int numberOfVerticalDisplays = 8; // Количество модулей по вертикали Max72xxPanel matrix = Max72xxPanel(pinCS, numberOfHorizontalDisplays, numberOfVerticalDisplays); String tape = ""; int wait = 10; // Скорость прокрутки в миллисикундах int spacer = 1; // Промежуток между символами (кол-во точек) int width = 5 + spacer; // Ширина символа /* Перекодировка русского шрифта из UTF-8 в Windows-1251 */ String utf8rus(String source) { int i,k; String target; unsigned char n; char m = { "0", "\0" }; k = source.length(); i = 0; while (i < k) { n = source[i]; i++; if (n >= 0xC0) { switch (n) { case 0xD0: { n = source[i]; i++; if (n == 0x81) { n = 0xA8; break; } if (n >= 0x90 && n <= 0xBF) n = n + 0x2F; break; } case 0xD1: { n = source[i]; i++; if (n == 0x91) { n = 0xB7; break; } if (n >= 0x80 && n <= 0x8F) n = n + 0x6F; break; } } } m = n; target = target + String(m); } return target; } /* Код для работы с com-портом */ String Serial_Read() { unsigned char c; // переменная для чтения сериал порта String Serial_string = ""; // Формируемая из символов строка while (Serial.available() > 0) { // Если в сериал порту есть символы c = Serial.read(); // Читаем символ //Serial.print(c,HEX); Serial.print(" "); Serial.print(c); if (c == "\n") { // Если это конец строки return Serial_string; // Возвращаем строку } if (c == 0xB8) c = c - 0x01; // Коррекция кодов символа под таблицу???? так как русские символы в таблице сдвинуты относительно стандартной кодировки utf на 1 символ if (c >= 0xBF && c <= 0xFF) c = c - 0x01; Serial_string = Serial_string + String(char(c)); //Добавить символ в строку } return Serial_string; } void setup() { Serial.begin(9600); tape = utf8rus("сайт Amateur Radio WorkShop"); // Этот текст выводиться при включении или если в com-порт не пришла информация matrix.setIntensity(3); // Яркость от 0 до 15 matrix.setRotation(matrix.getRotation()+3); //1 - 90 2 - 180 3 - 270 } void loop() { if (Serial.available()){ tape=Serial_Read(); } for (int i = 0 ; i < width * tape.length() + matrix.width() - 1 - spacer; i++) { matrix.fillScreen(LOW); int letter = i / width; // Номер символа выводимого на матрицу int x = (matrix.width() - 1) - i % width; int y = (matrix.height() - 8) / 2; // Центрируем текст по вертикали while (x + width - spacer >= 0 && letter >= 0) { if (letter < tape.length()) { matrix.drawChar(x, y, tape, HIGH, LOW,1); } letter--; x -= width; } matrix.write(); // Вывод сообщения на экран delay(wait); } }

Расписывать код не вижу смысла. Он и так хорошо прокомментирован. Однако есть некоторые особенности, о которых стоит упомянуть.

Примечание. Важно. Стандартная библиотека Adafruit_GFX изначально поддерживает только английские шрифты, поэтому ребята из России постарались и переписали библиотеку добавив русские шрифты и всякие вкусняшки. Все библиотеки и скетч доступны у меня на странице в GitHUB .

Кусок кода для работы с com-портом, нужен для того чтобы оперативно менять текст сообщения выводимого на светодиодный модуль. Однако он нужен нам не только для этого. В дальнейшем посредством этой функции мы свяжем наш и бегущую строку на Arduino.

Все давно привыкли, что у каждого электронного устройства есть экран, с помощью которого оно дает человеку всякую полезную информацию. MP3-плеер показывает название играемого трека, пульт квадрокоптера отображает полетную телеметрию, даже стиральная машина выводит на дисплей время до конца стирки, а на смартфоне вообще размещается целый рабочий стол персонального компьютера! Скорее всего, вашему очередному устройству тоже не помешает какой-нибудь небольшой дисплейчик 🙂 Попробуем сделать простые электронные часы! А в качестве табло используем распространенный и дешевый символьный жидкокристаллический дисплей 1602. Вот прямо такой, как на картинке: Кроме 16х2, достаточно популярным считается символьный дисплей 20х4 (четыре строки по 20 символов), а также графический дисплей с разрешением 128х64 точек. Вот они на картинках:

1. Подключение символьного ЖК дисплея 1602

У дисплея 1602 есть 16 выводов. Обычно они нумеруются слева-направо, если смотреть на него так как на картинке. Иногда выводы подписываются, типа: DB0, DB1, EN и т.п. А иногда просто указывают номер вывода. В любом случае, список выводов всегда одинаковый: 1 — «GND», земля (минус питания); 2 — «Vcc»,­ питание +5В; 3 — «VEE», контраст; 4 — «RS», выбор регистра; 5 — «R/W», направление передачи данных (запись/чтение); 6 — «EN», синхронизация; 7-14 — «DB0­», «DB1», .., «DB7″­- шина данных; 15 — анод подсветки (+5В); 16 — катод подсветки (земля). Линии VEE, RS и четыре линии данных DB4, DB5, DB6, DB7 подключаем к цифровым выводам контроллера. Линию «R/W» подключим к «земле» контроллера (так как нам потребуется только функция записи в память дисплея). Подсветку пока подключать не будем, с этим, я полагаю, вы сами легко разберетесь 🙂 Принципиальная схема подключения дисплея к Ардуино Уно
Внешний вид макета
На всякий случай еще и в виде таблички:
ЖК дисплей 1602 1 2 4 6 11 12 13 14 15 16
Ардуино Уно GND +5V 4 5 6 7 8 9 +5V GND

2. Программируем «Hello, world!»

Для работы с ЖК дисплеями различных размеров и типов, в редакторе Arduino IDE имеется специальная библиотека LiquidCrystal . Чтобы подключить библиотеку, запишем первой строчкой нашей программы следующее выражение: #include Далее, нам потребуется указать какие выводы Ардуино мы использовали для подключения дисплея. Эту информацию мы укажем при инициализации модуля: LiquidCrystal lcd(4, 5, 6, 7, 8, 9); Здесь первые два аргумента — это выводы RS и EN, а оставшиеся четыре — линии шины данных DB4-DB7. Далее, укажем размер дисплея с помощью команды «begin»: lcd.begin(16, 2); Напоминаю, в нашем дисплее имеется две строки, по 16 символов в каждой. Наконец, для вывода текста нам понадобится простая функция «print». Вывод с помощью этой функции всем известной фразы будет выглядеть следующим образом: lcd.print("Hello, world!"); Полностью программа будет выглядеть так: #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); lcd.print("Hello, world!"); } void loop(){ } Загружаем её на Ардуино Уно, и смотрим что творится на дисплее. Может быть три основных ситуации 🙂 1) На дисплее отобразится надпись «Hello, world!». Значит вы все правильно подключили, и контраст каким-то чудесным образом оказался изначально правильно настроен. Радуемся, и переходим к следующей главе. 2) На дисплее отобразится целый ряд черных прямоугольников — требуется настройка контраста! Именно для этого мы добавили в цепь потенциометр с ручкой. Крутим его от одного края, до другого, до момента пока на дисплее не появится четкая надпись. 3) Два ряда черных прямоугольников. Скорее всего, вы что-то напутали при подключении. Проверьте трижды все провода. Если не найдете ошибку — попросите кота проверить!

3. Программируем часы

Теперь когда дисплей точно работает, попробуем превратить наше нехитрое устройство в настоящие электронные часы. Внимание! Для вывода времени нам потребуется библиотека «Time». Если она еще не установлена, то можно скачать архив по ссылке . Подключим ее: #include Затем установим текущие дату и время с помощью функции «setTime»: setTime(23, 59, 59, 12, 31, 2015); Здесь все понятно: часы, минуты, секунды, месяц, число, год. Для вывода даты используем кучу функции:
  • year() — вернет нам год;
  • month()­ — месяц;
  • day() ­- день;
  • hour() ­- час;
  • minute() — вернет минуту;
  • second() -­ секунду.
Теперь обратим внимание вот на какой факт. Если посчитать количество символов в типовой записи даты: «31.12.2015 23:59:59», получим 19. А у нас всего 16! Не влазит, однако, в одну строчку. Решить проблему можно еще одной полезной функцией — «setCursor». Эта функция устанавливает курсор в нужную позицию. Например: lcd.setCursor(0,1); Установит курсор в начало второй строчки. Курсор — это место символа, с которого начнется вывод текста следующей командой «print». Воспользуемся этой функцией для вывода даты в первой строчке, а времени во второй. С выводом даты и времени теперь все ясно. Остались рутинные вещи. Например, после каждого заполнения дисплея, мы будем его чистить функцией «clear()»: lcd.clear(); А еще нам нет смысла выводить данные на дисплей чаще чем раз в секунду, поэтому между двумя итерациями сделаем паузу в 1000 миллисекунд. Итак, сложив все вместе, получим такую программу: #include #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); setTime(7,0,0,1,10,2015); // 7 утра, десятого января 2015 года } void loop(){ lcd.clear(); lcd.print(day()); lcd.print("."); lcd.print(month()); lcd.print("."); lcd.print(year()); lcd.setCursor(0, 1); lcd.print(hour()); lcd.print(":"); lcd.print(minute()); lcd.print(":"); lcd.print(second()); delay(1000); } Загружаем скетч на Ардуино Уно, и наблюдаем за ходом часиков! 🙂 Для того чтобы закрепить полученные знания, рекомендую прокачать наши часы до полноценного будильника. Всего-то на всего потребуется добавить пару кнопок и зуммер 🙂

QAPASS LCD 1602 русский шрифт не поддерживает, но можно вывести кириллицу на Arduino с помощью создания собственных символов. Рассмотрим, как сделать любые символы и буквы на кириллице на LCD дисплее Ардуино. Для этого нам потребуется использовать в скетче переменную byte и функцию lcd.createChar () . Сразу отметим, что объем памяти на Ардуино для знаков ограничен всего восемью символами.

Как вывести свой символ на LCD 1602

Вывести свой символ или кириллическую букву на дисплей поможет таблица знакогенератора (CGROM). Такой вид памяти в Ардуино, как CGRAM, может хранить собственные символы, но размер памяти ограничен и может вместить лишь 8 собственных символов. Один из нестандартных символов, который пригодится для создания домашней метеостанции — знак градуса. Давайте нарисуем символ.


Для начала возьмите листок бумаги и нарисуйте на нем таблицу, где будет 5 столбцов и 8 строчек. Далее заштрихуйте в таблице клеточки (смотри фото выше), которые должны высвечиваться на дисплее. Дело в том, что каждый символ на дисплее состоит из пикселей (5 пикселей в ширину и 8 пикселей в высоту). Далее представим наш символ в виде массива данных, состоящего из восьми элементов — восьми строк.

Выводим на LCD 1602 собственный символ

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • LCD монитор 1602;
  • провода «папа-мама».

Подключение LCD дисплея по I2C производится четырьмя проводами «папка-мамка» - 2 провода данных и 2 провода питания. Если вы подключаете дисплей Ардиуно УНО, используйте следующую схему — вывод SDA подключается к порту A4, вывод SCL – к порту A5 и два провода питания — GND и 5V. Если QAPASS 1602 подключается по шине I2C к Arduino Mega , то на плате имеются соответствующие порты — SDA и SCL.

Скетч для создания символа на LCD I2C

#include #include // создаем свой символ и присваиваем ему имя "simvol" byte simvol = { 0b01100, 0b10010, 0b10010, 0b01100, 0b00000, 0b00000, 0b00000, 0b00000 }; void setup () { lcd.init (); // инициализация LCD дисплея lcd.backlight (); lcd.createChar (1, simvol); lcd.setCursor (0,0); // ставим курсор на 1 символ первой строки lcd.print (char (1)); // печатаем символ на первой строке } void loop () { }

Пояснения к коду:

  1. с помощью массива byte simvol = { }; мы зашифровали знак градуса, который нарисовали ранее на листочке бумаги;
  2. функция lcd.createChar(num, data); создает пользовательский символ для LCD, где в скобках указан num — номер символа и data — данные о массиве.
  3. каждая строка массива начинается с 0b — «нуль» и прописная «b».

Выводим на LCD 1602 русский шрифт

QAPASS дисплей поддерживает 8 новых символов (пронумерованных от 0 до 7) размером 5 на 8 пикселей. Букву на кириллице, как и символ, можно задать массивом из восьми байт, характеризующих соответствующую строку. Можно добавить до 8 символов, поэтому используйте при выводе сочетание латинских и кириллических букв, как на примере. Загрузите скетч с надписью «Я ❤ сайт»

Скетч с русскими буквами на LCD I2C

#include // библиотека для управления устройствами по I2C #include // подключаем библиотеку для LCD 1602 LiquidCrystal_I2C lcd(0x27,20,2); // присваиваем имя lcd для дисплея 20х2 // создаем символ сердца и четырех букв на кириллице byte heart = { 0b00000, 0b01010, 0b11111, 0b11111, 0b11111, 0b01110, 0b00100, 0b00000 }; byte I = { 0b01111, 0b10001, 0b10001, 0b01111, 0b00101, 0b01001, 0b10001, 0b00000 }; byte B = { 0b11111, 0b10000, 0b10000, 0b11110, 0b10001, 0b10001, 0b11110, 0b00000 }; byte N = { 0b10001, 0b10001, 0b10011, 0b10101, 0b11001, 0b10001, 0b10001, 0b00000 }; byte F = { 0b01110, 0b10101, 0b10101, 0b10101, 0b01110, 0b00100, 0b00100, 0b00000 }; void setup () { lcd.init (); // инициализация LCD дисплея lcd.backlight (); // включение подсветки дисплея // присваиваем символам порядковый номер lcd.createChar (1, heart); lcd.createChar (2, I); lcd.createChar (3, B); lcd.createChar (4, N); lcd.createChar (5, F); lcd.setCursor (6,0); // устанавливаем курсор на 6 символ первой строки lcd.print (char (2)); lcd.print (" "); lcd.print (char (1)); lcd.setCursor (0,1); // устанавливаем курсор на начало второй строки lcd.print ("P"); lcd.print ("O"); lcd.print (char (3)); lcd.print ("O"); lcd.print ("T"); lcd.print ("E"); lcd.print ("X"); lcd.print ("H"); lcd.print (char (4)); lcd.print ("K"); lcd.print ("A"); lcd.print ("1"); lcd.print ("8"); lcd.print ("."); lcd.print ("P"); lcd.print (char (5)); } void loop () { }

Пояснения к коду:

  1. Массивы строк в функции byte simvol = { }; можно прописывать в строку;
  2. Слово сайт использует набор русских и латинских букв.
  3. Процедура void loop() в скетче не используется, но все равно присутствует.

Ежегодно на вывесках магазинов, улицах и переходах устанавливаются панели, отражающие рекламные записи в виде текста. Огоньки на панелях зажигаются по-разному: строки передвигаются вверх, вниз, в правую и левую сторону. Также актуальны светящиеся картинки.

Такие аксессуары прохожие не оставят без внимания. Многие начинающие электронщики интересуется тем, как устроена эта конструкция и что требуется для создания. Изделие легко изготавливается в домашних условиях. Статья познакомит начинающего любителя электронных устройств с принципами работы бегущей строки, где Ардуино используется в качестве основного компонента.

Бегущая строка на Ардуино – электронное изделие, в основе которого лежит микроконтроллер Arduino. Рабочая область прибора покрыта светодиодами. Основное предназначение – транслирование изображения и текстовых сообщений. Данные могут быть статичными и анимированными.

Световые строки создаются с помощью модулей. Размер по умолчанию – 32х16 см. Область, предназначенная под рабочую поверхность, напрямую зависит отношению количеству модулей и их размеру.

Кроме того, в строку вставлен контроллер, роль которого – управление картинкой. Устройство работает в автономном режиме. Чтобы изменить текстовое послание или изображение, бегущую строку подключают к компьютеру. Профиль из алюминия держит всю конструкцию.

По цветовой гамме различают 2 вида бегущей строки на Arduino:

  1. Монохромный или одноцветный.
  2. Разные оттенки – обычно 8 цветов, здесь также включен черный фон.

Больше всего люди предпочитают красный оттенок, так как он наиболее насыщенный. Также не менее популярен белый цвет. Если белые огоньки ярко пылают на черном фоне, текст выглядит более аккуратно.

Все данные пользователь помещает в память микроконтроллера. Для обновления картинки или строки существует несколько методов:

  1. Базовый – через USB-кабель. Микропроцессор Ардуино подключается через USB-порт к компьютерному устройству. С компьютера разработчик переносит свой программный код в память микропроцессора.
  2. По сети через Лан-кабель. Способ предусмотрен для тех пользователей, которые постоянно обновляют электронную строку. Техника подключения аналогична предыдущему пункту.

По типу различают бегущие доски, сделанные для интерьера и применения на улице. Уличные часто защищены специальным козырьком, чтобы на светодиоды не попала дождевая вода.

Необходимый набор инструментов и материалов

Ниже приведена таблица с подробным описанием инструментов, которые понадобятся для конструирования бегущих огней на Ардуино.

Инструмент Особенности
Нано – модель, которая по размерам самая миниатюрная среди линейки Ардуино. По своему характеру данная платформа напоминает своего сородича – . Начинающие электронщики, в основном, строят компактные модели своих устройств, поэтому в этом пригодится компактная Нано. Гнездо под внешнее питание спрятано внутри. Работа производится через USB-порты. Остальные характеристики схожи с моделью Уно.

Технические параметры:

  • напряжение, требуемое для питания устройства, – 5 Вольт;
  • масса – 7 грамм;
  • размер – 19х42 мм;
  • рабочая частотность – 16 МГц;
  • флеш память – 16 Кб;
  • оперативная память – 2 Кб;
  • цифровые пины – 14 штук, причем 6 можно использовать, как ШИМ-выходы
  • требуемое питание при входе – около 12 Вольт.

Существует 2 способа для питания платформы:

  1. Через микро-USB или мини-USB.
  2. При использовании внешнего питательного элемента, в котором общее напряжение от 6 до 20 Вольт. Практически отсутствуют пульсационные волны.
Лента из светодиодов Лента из светодиодов подключается параллельным способом, по несколько отрезков. Каждый отрезок должен быть не больше 5 м в длину. Кроме того, в магазинах она продается именно по таким меркам. Если же потребуется создать строку, на которую нужно 10 или даже 15 метров, придется повозиться. Нельзя ни при каких условиях соединять первый кусок с началом второго. Считается, что 5 метров – длина, показывающая расчет, при котором удерживаются дорожки ленты. Если нагрузить ленту, то произойдет поломка, и сделанное изделие испортится.

Да и со стороны ухоженности текстовая дорожка будет некрасиво выглядеть из-за неравномерного свечения: в начале дорожке свет будет ярким, а в конце потускнеет.

Провода Набор проводов для соединения компонентов
Плата для управления процессом На управляющую платформу помещается микропроцессор и остальные части для готового изделия (например Тройка Шилд).

Чертежи и схемы

Чтобы управлять светодиодной лентой, в первую очередь, понадобится дать напряжение в аноды портов с номерами от 2-х до 9. После этого напряжение подается прямиком в катоды. Для этого понадобится блок транзисторов.

Внимание! На выходе у платформы получается 5 Вольт. Чтобы подключить аноды в плате, необходимо использовать резисторы, которые будут работать в 220 Ом. В то же время для подключения блока транзисторов к выходам потребуются резисторы на 1 КОм.

В проект включено использование биполярных транзисторов 2N2904. Если подцепить все транзисторы к своему контакту на матричной платформе, понадобится всего 10 штук транзисторов. При конструировании электронных устройств такой вид транзисторов наиболее популярен и подходит по всем критериям и условиям разработки бегущей строки на Ардуино. В созданную систему будет подаваться небольшое напряжение.

Объясним то, как происходит загорание огоньков на ленте. Выбирается 1 контакт, который отвечает за подачу сигнала в анод светодиода. На базу эмиттера, одновременно с предыдущим действием, подается сигнал с выходного отверстия на счетчике. Поэтому от коллектора транзистора напряжение переходит прямиком в катоды светодиодов. На матричной поверхности аноды на соседних строчках переплетаются с катодами соседних столбцов. Поэтому пользователь может наблюдать явление, когда одновременно загорается вся бегущая строка.

Есть еще один вариант исполнения:

Схема будет выглядеть так:

Программная часть

Для первого варианта исполнения код может выглядеть так:

Void setup(){ int i; for(i = 2; i < 10; i++) pinMode(i,OUTPUT); pinMode(clock,OUTPUT); pinMode(reset,OUTPUT); digitalWrite(reset,HIGH); delayMicroseconds(5); digitalWrite(reset,LOW); } void display_symbol(int loops) { for(x=0;x-1;y--){ byte temp = symbols[x][y]; byte temp_2=symbols[y]; byte val = (temp<>7-z); for(int i =0; i<8; i++) digitalWrite(i+2, (val>>i)&B00000001); delayMicroseconds(800); digitalWrite(clock,HIGH); delayMicroseconds(5); digitalWrite(clock,LOW); } } } } }

Программный код для осуществления проекта “бегущей строки на ардуино” во втором случае такой:

Int RGB1 =12; int RGB2 =11; int RGB3 =10; int RGB4 =9; int RGB5 =8; int RGB6 =7; int RGB7 =6; int RGB8 =5; int RGB9 =4; int RGB10 =3; int key1 =A3; int key2 =A2; int key3 =A1; int key4 =A0; void setup() { Serial.begin(9600); pinMode(RGB1, OUTPUT); pinMode(RGB2, OUTPUT); pinMode(RGB3, OUTPUT); pinMode(RGB4, OUTPUT); pinMode(RGB5, OUTPUT); pinMode(RGB6, OUTPUT); pinMode(RGB7, OUTPUT); pinMode(RGB8, OUTPUT); pinMode(RGB9, OUTPUT); pinMode(RGB10, OUTPUT); pinMode(key1, INPUT_PULLUP); pinMode(key2, INPUT_PULLUP); pinMode(key3, INPUT_PULLUP); pinMode(key4, INPUT_PULLUP); } void loop() { int key1Value = analogRead(key1); int key2Value = analogRead(key2); int key3Value = analogRead(key3); int key4Value = analogRead(key4); if (key1Value <= 100) { delay(30); if (key1Value <= 100) { digitalWrite(RGB5,HIGH); digitalWrite(RGB6, HIGH); delay(50); digitalWrite(RGB4, HIGH); digitalWrite(RGB7,HIGH); delay(50); digitalWrite(RGB3, HIGH); digitalWrite(RGB8, HIGH); delay(50); digitalWrite(RGB2,HIGH); digitalWrite(RGB9, HIGH); delay(50); digitalWrite(RGB1, HIGH); digitalWrite(RGB10, HIGH); delay(1000); } else { digitalWrite(RGB1, LOW); digitalWrite(RGB2, LOW); digitalWrite(RGB3, LOW); digitalWrite(RGB4, LOW); digitalWrite(RGB5, LOW); digitalWrite(RGB6, LOW); digitalWrite(RGB7, LOW); digitalWrite(RGB8, LOW); digitalWrite(RGB9, LOW); digitalWrite(RGB10, LOW); } } if (key2Value <= 100) { digitalWrite(RGB1,HIGH); digitalWrite(RGB6, HIGH); delay(40); digitalWrite(RGB2, HIGH); digitalWrite(RGB7,HIGH); delay(40); digitalWrite(RGB3, HIGH); digitalWrite(RGB8, HIGH); delay(40); digitalWrite(RGB4,HIGH); digitalWrite(RGB9, HIGH); delay(40); digitalWrite(RGB5, HIGH); digitalWrite(RGB10, HIGH); delay(1000); } else { digitalWrite(RGB1, LOW); digitalWrite(RGB2, LOW); digitalWrite(RGB3, LOW); digitalWrite(RGB4, LOW); digitalWrite(RGB5, LOW); digitalWrite(RGB6, LOW); digitalWrite(RGB7, LOW); digitalWrite(RGB8, LOW); digitalWrite(RGB9, LOW); digitalWrite(RGB10, LOW); } if (key3Value <= 100) { digitalWrite(RGB1,HIGH); delay(90); digitalWrite(RGB1, LOW); digitalWrite(RGB2, HIGH); delay(90); digitalWrite(RGB2, LOW); digitalWrite(RGB3, HIGH); delay(90); digitalWrite(RGB3, LOW); digitalWrite(RGB4, HIGH); delay(90); digitalWrite(RGB4, LOW); digitalWrite(RGB5,HIGH); delay(90); digitalWrite(RGB5, LOW); digitalWrite(RGB6,HIGH); delay(90); digitalWrite(RGB6, LOW); digitalWrite(RGB7,HIGH); delay(90); digitalWrite(RGB7, LOW); digitalWrite(RGB8,HIGH); delay(90); digitalWrite(RGB8, LOW); digitalWrite(RGB9,HIGH); delay(90); digitalWrite(RGB9, LOW); digitalWrite(RGB10,HIGH); delay(1000); } else { digitalWrite(RGB1, LOW); digitalWrite(RGB2, LOW); digitalWrite(RGB3, LOW); digitalWrite(RGB4, LOW); digitalWrite(RGB5, LOW); digitalWrite(RGB6, LOW); digitalWrite(RGB7, LOW); digitalWrite(RGB8, LOW); digitalWrite(RGB9, LOW); digitalWrite(RGB10, LOW); } if (key4Value <= 100) { digitalWrite(RGB1,HIGH); delay(50); digitalWrite(RGB1, LOW); digitalWrite(RGB2, HIGH); delay(50); digitalWrite(RGB2, LOW); digitalWrite(RGB3, HIGH); delay(50); digitalWrite(RGB3, LOW); digitalWrite(RGB4,HIGH); delay(50); digitalWrite(RGB4, LOW); digitalWrite(RGB5, HIGH); delay(50); digitalWrite(RGB5, LOW); digitalWrite(RGB6, HIGH); delay(50); digitalWrite(RGB6, LOW); digitalWrite(RGB7,HIGH); delay(50); digitalWrite(RGB7, LOW); digitalWrite(RGB8, HIGH); delay(50); digitalWrite(RGB8, LOW); digitalWrite(RGB9, HIGH); delay(50); digitalWrite(RGB9, LOW); digitalWrite(RGB10,HIGH); delay(50); digitalWrite(RGB10, LOW); digitalWrite(RGB9, HIGH); delay(50); digitalWrite(RGB9, LOW); digitalWrite(RGB8, HIGH); delay(50); digitalWrite(RGB8, LOW); digitalWrite(RGB7,HIGH); delay(50); digitalWrite(RGB7, LOW); digitalWrite(RGB6, HIGH); delay(50); digitalWrite(RGB6, LOW); digitalWrite(RGB5, HIGH); delay(50); digitalWrite(RGB5, LOW); digitalWrite(RGB4,HIGH); delay(50); digitalWrite(RGB4, LOW); digitalWrite(RGB3, HIGH); delay(50); digitalWrite(RGB3, LOW); digitalWrite(RGB2, HIGH); delay(50); digitalWrite(RGB2, LOW); digitalWrite(RGB1, HIGH); delay(50); digitalWrite(RGB1, LOW); delay(1000); } else { digitalWrite(RGB1, LOW); digitalWrite(RGB2, LOW); digitalWrite(RGB3, LOW); digitalWrite(RGB4, LOW); digitalWrite(RGB5, LOW); digitalWrite(RGB6, LOW); digitalWrite(RGB7, LOW); digitalWrite(RGB8, LOW); digitalWrite(RGB9, LOW); digitalWrite(RGB10, LOW); } }

Пошаговая инструкция по созданию устройства

Алгоритм конструирования Arduino бегущая строка:

  1. Загружаем код программы, описанной выше, в микропроцессор с помощью USB-кабеля и компьютера.
  2. Помещаем и светодиодную ленту на платформу управления.
  3. Соединяем все детали между собой.
  4. Включаем питание.

В итоговом видео можно понять как работает второй вариант схемы:

Управление со смартфона

Светодиодными огоньками можно управлять со смартфона. Для осуществления задуманного понадобятся Блютуз и специальный модуль – HC-06, предназначенный для Ардуино. Но это уже мы сделаем в следующих уроках. Всем хороших проектов.