Метод эквивалентных преобразований для расчета электрических цепей. Эквивалентные преобразования электрических цепей

Расчет сложной цепи очень часто упрощается, если в схеме ее замещения провести соответствующие эквивалентные преобразования, приводящие к существенному упрощению конфигурации этой схемы. Рассмотрим наиболее часто встречающиеся, простые соединения элементов цепей: последовательное, параллельное и смешанное.

Последовательное соединение элементов

Если имеется группа последовательно соединенных элементов R 1 , R 2 ,…R n (Рис. 2.3, а ), то ее всегда можно представить в видеодного элемента (Рис. 2.3, б ), у которого

R Э = R 1 + R 2 + …+ R n .. (2.20)

Условием эквивалентности замены, здесь и в дальнейшем, является то, что такая замена не влияет на ток и напряжение на внешних зажимах данного участка схемы.

Параллельное соединение элементов

Если имеется группа параллельно соединенных элементов R 1 , R 2 ,…R n (Рис. 2.4, а ), то ее всегда можно представить в виде одного элемента (Рис. 2.4, б ), у которого

, где (2.21)

Для двух параллельно соединенных элементов выражение (2.21) примет вид:

Смешанное соединение элементов

Если в схеме цепи имеется группа элементов, в которой элементы соединены последовательно и параллельно (Рис. 2.5), то ее также можно привести к одному элементу, используя поэтапно преобразования (2.20) и (2.21).

Метод наложения

Данный метод (Рис 2.6) основан на свойствах линейных цепей, которые подчиняются принципу суперпозиции (наложения решений). Это связано с тем, что для линейной цепи параметры ее элементов не зависят от действующих в них токов и напряжений. Если в линейной цепи действуют несколько ЭДС, то ток в любой ветви данной цепи может быть получен как алгебраическая сумма токов, вызываемых в этой ветви каждой из ЭДС в отдельности.

При определении частичных слагающих токов и следует считать включенными внутренние сопротивления тех источников, ЭДС которых исключаются. Если в схеме остается один источник (Рис 2.6, б, с ), к ней применимы преобразования, изложенные выше. Искомый ток в результате определяется как сумма частных токов, то есть .

Этот метод применим либо к отдельным участкам сложной электрической цепи, либо к электрической цепи, в которой действует один источник. Проведя по определенным правилам эквивалентные преобразования, можно свести электрическую цепь к виду:

Зависит от способа соединения пассивных элементов.

Самостоятельно!!! Рассмотреть: последовательное, параллельное, смешанное соединение и соединения «треугольником» и «звездой».

План каждого соединения:

– схема соединения;

– основные свойства этого соединения;

– формулы эквивалентных преобразований;

– пример.

1. Волынский В.А. и др. «Электротехника», 1987 г. (С. 37-41);

2. Электротехника под ред. В. Г. Герасимова. С. 22-27.;

3. Касаткин «Электротехника».

В зависимости от назначения электрической цепи ее элементы (источники, приемники, вспомогательные элементы) могут соединяться различным образом. Существует четыре основных вида соединений элементов: последовательное, параллельное, «треугольником», «звездой» и смешанное.

1. Последовательным называется соединение, при котором ток в каждом элементе один и тот же. При последовательном соединении n пассивных элементов цепи. Схема замещения с n резистивными элементами может быть заменена эквивалентной схемой с одни резистивным элементом.

Например:

2. Параллельным называется соединение, при котором все участки цепи присоединяются к одной паре узлов, то есть находятся под воздействием одного и того же напряжения.

Рис. Схема замещения цепи с параллельным соединением пассивных элементов и ее эквивалентная схема

Ток в каждой ветви определяется напряжением и сопротивлением:

.

Условия эквивалентности будут соблюдены, если ток эквивалентной схемы будет равен току в неразветвленной части цепи, то есть .

В результате получаем:

,

из которой получают формулу для эквивалентного сопротивления:

или для эквивалентной проводимости:

Эквивалентное сопротивление параллельно соединенных элементов обратно пропорционально ее эквивалентной проводимости:

поэтому оно всегда меньше наименьшего из сопротивления цепи.

Если параллельно соединены n ветвей с одинаковыми сопротивлениями R , то их эквивалентное сопротивление будет в n раз меньше сопротивления каждой ветви, то есть .

Параллельное соединение обеспечивает одинаковое напряжение на всех включенных приемниках.

3. Смешанное соединение резистивных элементов. При наличии в цепи одного источника внешнюю по отношению к нему часть схемы можно в большинстве случаев рассматривать как смешанное (последовательно-параллельное) соединение резистивных элементов.

Для расчета такой цепи удобно преобразовать ее схему замещения в эквивалентную схему с последовательным соединением резистивных элементов.

Между узлами a и b включены 3 резистивных элемента с сопротивлениями , и .

После замены параллельного соединения резистивных элементов эквивалентным резистивным элементом с сопротивлением

получается эквивалентная схема с последовательным соединением двух резистивным элементов и .

Ток в неразветвленной части: .

Токи в параллельных ветвях:

4. В некоторых сложных электрических цепях встречаются соединения элементов, которые нельзя отнести к вышеперечисленным. Типичным примером подобной сложной цепи является мостовая цепь.

Рис. Схема замещения мостовой цепи и ее эквивалентная схема

В этом случае часть цепи образует «треугольник», вершинами которого являются три узла (a , b , c ), а сторонами – три ветви с сопротивлениями , , , включенных между этими узлами. Расчет такой цепи удобно проводить, используя эквивалентную замену трех ветвей, соединенных «треугольником», тремя ветвями, соединенными трехлучевой «звездой». При замене соединения «треугольником» ветвей с сопротивлениями , , ветвями с сопротивлениями , , , соединенных «звездой», мостовая цепь преобразовывается в цепь с последовательным и параллельным соединением элементов.

Для определения сопротивления , , ветвей, соединенных «звездой», необходимо найти соотношения, связывающих их с сопротивлениями ветвей, соединенных «треугольником». С этой целью воспользуемся общим условием эквивалентности, по которым напряжения и токи в ветвях, не подвергнутых преобразованию, должны оставаться без изменения в любых режимах, в точности при размыкании ветвей, присоединенных к узлам a , b , c .

При отсоединении ветви с сопротивлением от узла a токи , а также напряжение равны соответствующим токам и и напряжению в схеме (б), то есть сопротивления между точками b и c для обеих схем (а) и (б) одинаковы.

Преобразования называются эквивалентными, если при замене одного участка цепи другим, более простым, токи и напряжения участка цепи, который не был преобразован, не изменяются.

При расчете электрических схем часто возникает целесообразность преобразования схем этих цепей в более простые и удобные для расчета.

Одним из основных видов преобразования электрических схем, применяемых на практике, является преобразование схемы со смешанным соединением элементов. Смешанное соединение элементов представляет собой сочетание более простых соединений – последовательного и параллельного.

Последовательное соединение

Последовательное соединение элементов цепи – соединение нескольких элементов, через которые проходит один и тот же ток.

Рисунок 3.1 Схемы последовательного соединения резисторов и индуктивностей

В соответствии с принципом эквивалентного преобразования и законом Ома имеем:

Параллельное соединение элементов

Параллельное соединение элементов – соединение нескольких элементов, при котором все эти элементы находятся под одним и тем же напряжением.

Рисунок 3. 2 Схема параллельного соединения сопротивлений

Рассмотрим параллельное соединение двух сопротивлений. В соответствии с для участка цепи с , (на вышеприведенном рисунке), . Поскольку

.

Найдем ток в каждой из параллельных ветвей , если известен общий ток и значения сопротивлений . По закону Ома ; . Тогда:

.

Полученное выражение является формулой распределения токов: ток в одной из параллельных ветвей равен общему току, умноженному на сопротивление противоположной ветви и поделенному на сумму сопротивлений обеих ветвей.

Рисунок 3.3 Схема параллельно-последовательного соединения сопротивлений

Эквивалентное преобразование треугольника сопротивлений в звезду и обратно.

Если известны сопротивления , которые образуют между узлами треугольник сопротивлений, то для расчета сопротивлений , которые соединены в эквивалентную звезду между теми же самыми узлами, используют формулы:

; ; . (3.5)

Рисунок 3.4 Схемы соединения сопротивлений треугольником (а) и звездой (б)

Обратное преобразование осуществляется при помощи формул:

; ; (3.6)

Эквивалентные преобразования схем с источниками.

Закон Ома для участка цепи с источником.

Рассмотрим понятие одноконтурной и двухузловой схем.

Эти схемы характерны тем, что имеют один контур (рисунок 3.5) и один независимый контур (рисунок 3.6) соответственно.

Рисунок 3.5 Одноконтурная схема Рисунок 3.6 Двухузловая схема

Найдем ток в первой схеме. Обозначим напряжение между точками и : . Тогда для двух условных контуров получим два уравнения:


;

Из первого уравнения получаем закон Ома для участка цепи с источником напряжения:

Реальные источники электрической энергии и их эквивалентные схемы.

Реальный источник напряжения – активный элемент, который можно представить в виде идеального источника напряжения и последовательно соединенного с ним пассивного элемента , (внутреннего сопротивления), которое учитывает потери энергии в источнике (рисунок 3.7).

Рисунок 3.7 Схема реального источника напряжения

По закону Кирхгофа можно записать , откуда получаем выражение для вольт - амперной характеристики реального источника напряжения: .

Штриховой линией показана ВАХ идеального источника напряжения: .

Рисунок 3.8 Вольт-амперная характеристика реального источника напряжения

Выясним, при каких условиях реальный источник приближается к идеальному. Найдем напряжение на зажимах реального источника, к которому подключается сопротивление нагрузки (рисунок 3.7)

(3.7)

Из уравнения 3.7 видно, что источник напряжения можно рассматривать как идеальный , если выполняется условие .

Реальный источник тока – активный двухполюсник, который состоит из идеального источника тока и параллельного включенного с ним пассивного элемента , который учитывает потери (рисунок 3.9).

Рисунок 3.9 Схема реального источника тока

В соответствии с первым законом Кирхгофа можно записать:

Это выражение описывает ВАХ реального источника тока (рисунок 3.10). Штриховой линией показана ВАХ идеального источника тока:

Рисунок 3.10 Вольт-амперная характеристика реального источника тока

Найдем ток в сопротивлении нагрузки, которая подключена к реальному источнику тока (рисунок). По формуле разложения токов

. (3.8)

Исходя из формулы (3.8), реальный источник тока приближается к идеальному при условии R i >> R H .

Некоторые схемы реальных источников напряжения (рисунок 3.7) и тока (рисунок 3.9) эквивалентны. Выясним, при каких условиях? В соответствии с принципом эквивалентных преобразований, напряжение во внешней цепи (т.е. на опорной нагрузке) не может измениться при переходе от схемы (рисунок 3.7) к схеме (рисунок 3.9): U = U`.

Для первой схемы:

,

Для второй:

,

если U=U`, то

. (3.9)

Итак, схемы реальных источников напряжения и тока эквивалентны, если выполняются условия (3.9).

После изучения подразделов 3.1 и 3.2 дайте письменные ответы на контрольные вопросы, приведенные ниже.

Расчет электрических цепей постоянного тока

Основными законами, определяющими расчет электрической цепи , являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока , позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда » в эквивалентный «треугольник » и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

Решение задач

Задача 1. Для цепи (рис . 1), определить эквивалентное сопротивление относительно входных зажимов a−g , если известно: R 1 = R 2 = 0,5 Ом, R 3 = 8 Ом, R 4 = R 5 = 1 Ом, R 6 = 12 Ом, R 7 = 15 Ом, R 8 = 2 Ом, R 9 = 10 Ом, R 10 = 20 Ом.

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g :

Задача 2. Для цепи (рис . 2, а ), определить входное сопротивление если известно: R 1 = R 2 = R 3 = R 4 = 40 Ом.

Рис. 2

Исходную схему можно перечертить относительно входных зажимов (рис . 2, б ), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивления можно воспользоваться формулой:

где R - величина сопротивления, Ом;

n - количество параллельно соединенных сопротивлений.

Задача 3. Определить эквивалентное сопротивление относительно зажимов a-b , если R 1 = R 2 = R 3 = R 4 = R 5 = R 6 = 10 Ом (рис . 3, а ).

Преобразуем соединение «треугольник » f−d−c в эквивалентную «звезду ». Определяем величины преобразованных сопротивлений (рис . 3, б ):

По условию задачи величины всех сопротивлений равны, а значит:

На преобразованной схеме получили параллельное соединение ветвей между узлами e-b , тогда эквивалентное сопротивление равно:

И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

Задача 4. В заданной цепи (рис . 4, а ) входные сопротивления ветвей a− b , c- d и f−b , если известно, что: R 1 = 4 Ом, R 2 = 8 Ом, R 3 =4 Ом, R 4 = 8 Ом, R 5 = 2 Ом, R 6 = 8 Ом, R 7 = 6 Ом, R 8 =8 Ом.

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d , а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Ветвь a− b разрывают, и т.к. сопротивление R a -b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис . 4, б ):

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей R cd и R bf . Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает ») из схемы сопротивления R 1 , R 2 , R 3 , R 4 в первом случае, и R 5 , R 6 , R 7 , R 8 во втором случае.

Задача 5. В цепи (рис . 5) определить методом эквивалентных преобразований токи I 1 , I 2 , I 3 и составить баланс мощностей , если известно: R 1 = 12 Ом, R 2 = 20 Ом, R 3 = 30 Ом, U = 120 В.

Эквивалентное сопротивление для параллельно включенных сопротивлений:

Эквивалентное сопротивление всей цепи:

Ток в неразветвленной части схемы:

Напряжение на параллельных сопротивлениях:

Токи в параллельных ветвях:

Баланс мощностей :

Задача 6. В цепи (рис . 6, а ), определить методом эквивалентных преобразований показания амперметра , если известно: R 1 = 2 Ом, R 2 = 20 Ом, R 3 = 30 Ом, R 4 = 40 Ом, R 5 = 10 Ом, R 6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Если сопротивления R 2 , R 3 , R 4 , R 5 заменить одним эквивалентным сопротивлением R Э , то исходную схему можно представить в упрощенном виде (рис . 6, б ).

Величина эквивалентного сопротивления:

Преобразовав параллельное соединение сопротивлений R Э и R 6 схемы (рис . 6, б ), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

откуда ток I 1:

Напряжение на зажимах параллельных ветвей U ab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием R Э и R 6:

Тогда амперметр покажет ток:

Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис . 7, а ), если R 1 = R 2 = R 3 = R 4 = 3 Ом, J = 5 А, R 5 = 5 Ом.

Если электрическая цепь содержит несколько резисторов, то для подсчёта её основных параметров (силы тока, напряжения, мощности) удобно все резистивные устройства заменить на одно эквивалентное сопротивление цепи. Только для него должно выполняться следующее требование: его сопротивление должно быть равным суммарному значению сопротивлений всех элементов, то есть показания амперметра и вольтметра в обычной схеме и в преобразованной не должны измениться. Такой подход к решению задач называется методом свёртывания цепи.

Внимание! Расчёт эквивалентного (общего или суммарного) сопротивления в случае последовательного или параллельного подключения выполняется по разным формулам.

Последовательное соединение элементов

В случае последовательного подключения все приборы соединяются последовательно друг с другом, а собранная цепь не имеет разветвлений.

При таком подключении сила тока, проходящая через каждый резистор, будет одинаковая, а общее падение напряжения складывается из суммарных падений напряжения на каждом из приборов.

Чтобы определить суммарное значение в этом случае, воспользуемся законом Ома, который записывается следующим образом:

Из вышестоящего выражения получаем значение R :

Поскольку при последовательном соединении:

  • I = I1 = I2 =…= IN (2),
  • U = U1 + U2 +…+ UN (3),

формула для расчёта эквивалентного сопротивления (R общ или R экв ) из (1) – (3) будет иметь вид:

  • Rэкв = (U1 + U2 + …+ UN)/I,
  • Rэкв = R1 + R2 + … + RN (4).

Таким образом, если имеется N последовательно соединённых одинаковых элементов, то их можно заменить на одно устройство, у которого:

Rобщ = N·R (5).

При таком подключении входы от всех устройств соединены в одной точке, выходы – в другой точке. Эти точки в физике и электротехнике называются узлами. На электрических схемах узлы представляют собой места разветвления проводников и обозначаются точками.

Расчет эквивалентного сопротивления также выполняем с помощью закона Ома.

В этом случае общее значение силы тока складывается из суммы сил токов, протекающих по каждой ветви, а величина падения напряжения для каждого устройства и общее напряжение одинаковые.

Если имеются N резистивных устройств, подключенных таким образом, то:

I = I1 + I2 + … + IN (6),

U = U1 = U2 = … = UN (7).

Из выражений (1), (6) и (7) имеем:

  • Rобщ = U/(I1 + I2 + …+ IN),
  • 1/Rэкв = 1/R1 + 1/R2 +…+ 1/RN (8).

Если имеется N одинаковых резисторов, имеющих подключение данного типа, то формула (8) преобразуется следующим образом:

Rобщ = R · R / N·R = R / N (9).

Если соединены несколько катушек индуктивности, то их суммарное индуктивное сопротивление рассчитывается так же, как и для резисторов.

Расчёт при смешанном соединении устройств

В случае смешанного подключения присутствуют участки с последовательным и параллельным подключениями элементов.

При решении задачи используют метод сворачивания цепи (метод эквивалентных преобразований). Его используют для вычисления параметров в том случае, если есть один источник энергии.

Предположим, задана следующая задача. Электрическая схема (см. рис. ниже) состоит из 7 резисторов. Рассчитайте токи на всех резисторах, если имеются следующие исходные данные:

  • R1 = 1Ом,
  • R2 = 2Ом,
  • R3 = 3Ом,
  • R4 = 6Ом,
  • R5 = 9Ом,
  • R6 = 18Ом,
  • R7 = 2,8Ом,
  • U = 32В.

Из закона Ома имеем:

где R – суммарное сопротивление всех приборов.

Его будем находить, воспользовавшись методом сворачивания цепи.

Элементы R 2 и R 3 подключены параллельно, поэтому их можно заменить на R 2,3 , величину которого можно рассчитать по формуле:

R2,3= R2·R3 / (R2+R3).

R 4 , R 5 и R 6 также включены параллельно, и их можно заменить на R 4,5,6 , которое вычисляется следующим образом:

1/R4,5,6 = 1/R4+1/R5+1/R6.

Таким образом, схему, изображённую на картинке выше, можно заменить на эквивалентную, в которой вместо резисторов R2, R3 и R4, R5, R6 используются R2,3 и R4,5,6.

Согласно картинке выше, в результате преобразований получаем последовательное соединение резисторов R1, R2,3, R4,5,6 и R7.

R общ может быть найдено по формуле:

Rобщ = R1 + R2,3 + R4,5,6 + R7.

Подставляем числовые значения и рассчитываем R для определённых участков:

  • R2.3 = 2Ом·3Ом / (2Ом + 3Ом) = 1,2Ом,
  • 1/R4,5,6 = 1/6Ом + 1/9Ом + 1/18Ом = 1/3Ом,
  • R4,5,6 = 3Ом,
  • Rэкв = 1Ом + 1,2Ом + 3Ом + 2,8Ом= 8Ом.

Теперь, после того, как нашли R экв , можно вычислять значение I :

I = 32В / 8Ом = 4А.

После того, как мы получили величину общего тока, можно вычислить силу тока, протекающую на каждом участке.

Поскольку R 1 , R2,3, R 4,5,6 и R 7 соединены последовательно, то:

I1 = I2,3 = I4,5,6 = I7 = I = 4А.

  • U2,3 = I2,3·R2,3,
  • U2,3 = 4А·1,2Ом = 4,8В.

Поскольку R2 и R3 подключены параллельно, то U 2,3 = U 2 = U 3 , следовательно:

  • I2 = U2 / R2,
  • I2 = 4,8В / 2Ом = 2,4А,
  • I3 = U3 / R3,
  • I3 = 4,8В / 3Ом = 1,6А.
  • I2,3 = I2 + I3,
  • I2,3 = 2,4А + 1,6А = 4А.
  • U4,5,6 = I4,5,6·R4,5,6,
  • U4,5,6 = 4А·3Ом = 12В.

Так как R4, R5, Rб подключены параллельно друг к другу, то:

U4,5,6 = U4 = U5 = U6 = 12В.

Вычисляем I4, I5, I6:

  • I4 = U4 / R4,
  • I4 = 12В / 6Ом = 2А,
  • I5 = U5 / R5,
  • I5 = 12В / 9Ом » 1,3А,
  • I6 = U6 / R6,
  • I5 = 12В / 18Ом » 0,7А.

Проверяем правильность решения:

I4,5,6 = 2А + 1,3А + 0,7А = 4А.

Чтобы автоматизировать выполнение расчётов эквивалентных значений для различных участков цепи, можно воспользоваться сервисами сети Интернет, которые предлагают на их сайтах выполнить онлайн вычисления нужных электрических характеристик. Сервис обычно имеет встроенную специальную программу – калькулятор, которая помогает быстро выполнить расчет сопротивления цепи любой сложности.

Таким образом, использование метода эквивалентных преобразований при расчёте смешанных соединений различных устройств позволяет упростить и ускорить выполнение вычислений основных электрических параметров.

Видео